DATA INTEGRITY
Detecting and Responding to Ransomware and Other Destructive Events

Tim McBride
National Cybersecurity Center of Excellence
National Institute of Standards and Technology

Michael Ekstrom
Lauren Lusty
Julian Sexton
Anne Townsend
The MITRE Corporation

DRAFT
November 2017
di-nccoe@nist.gov
The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and academic institutions work together to address businesses’ most pressing cybersecurity challenges. Through this collaboration, the NCCoE develops modular, easily adaptable example cybersecurity solutions demonstrating how to apply standards and best practices using commercially available technology. To learn more about the NCCoE, visit http://nccoe.nist.gov. To learn more about NIST, visit http://www.nist.gov.

This document describes a problem that is relevant to many industry sectors. NCCoE cybersecurity experts will address this challenge through collaboration with a community of interest, including vendors of cybersecurity solutions. The resulting reference design will detail an approach that can be incorporated across multiple sectors.

ABSTRACT

Ransomware, destructive malware, insider threats, and even honest mistakes present an ongoing threat to organizations that manage data in various forms. Database records and structure, system files, configurations, user files, application code, and customer data are all potential targets of data corruption and destruction.

A quick, accurate, and thorough detection and response to a loss of data integrity can save an organization time, money, and headaches. While human knowledge and expertise is an essential component of these tasks, the right tools and preparation are essential to minimizing downtime and losses due to data integrity events. The NCCoE, in collaboration with members of the business community and vendors of cybersecurity solutions, will build an example solution to address these data integrity challenges. This project will detail methods and potential tool sets that can detect, mitigate, and contain data integrity events in the components of an enterprise network. It also will identify tools and strategies to aid in a security team’s response to such an event.

KEYWORDS

Data integrity, malware, ransomware, attack vector, malicious actor, malware detection, malware response

DISCLAIMER

Certain commercial entities, equipment, products, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST or NCCoE, nor is it intended to imply that the entities, equipment, products, or materials are necessarily the best available for the purpose.

COMMENTS ON NCCOE DOCUMENTS

Organizations are encouraged to review all draft publications during public comment periods and provide feedback. All publications from NIST’s National Cybersecurity Center of Excellence are available at http://nccoe.nist.gov.

Comments on this publication may be submitted to: di-nccoe@nist.gov

Public comment period: November 28, 2017 to December 12, 2017
TABLE OF CONTENTS

1 Executive Summary .. 4
 Purpose ... 4
 Scope .. 4
 Assumptions/Challenges .. 5
 Security Team .. 5
 Background ... 5

2 Scenarios .. 5
 Scenario 1: Ransomware .. 5
 Scenario 2: Data Destruction Malware .. 7
 Scenario 3: Virtual Machine Data Loss .. 8
 Scenario 4: Server Permissions Change .. 9
 Scenario 5: Database Metadata Change .. 11

3 High-Level Architecture .. 13
 Component List .. 13
 Desired Requirements .. 13

4 Relevant Standards and Guidance .. 14

5 Security Control Map ... 15
1 Executive Summary

Purpose

To defend against data integrity attacks, policies and tools must be in place with the capability to detect and respond to data integrity events. Prior to an event, information must be gathered to understand the range of normal activity within the enterprise environment, tools must be in place to detect the occurrence of a data integrity event, and policies must be established to respond efficiently and effectively. The purpose of this project is to help guide organizations in establishing the tools and procedures to detect data integrity events and respond in a way that is appropriate and timely.

In May 2017, the WannaCry ransomware infected more than 200,000 systems worldwide, causing widespread data loss. The ransomware exploited a vulnerability for which a patch was publicly released two months earlier. The Petya ransomware, which was discovered in 2016, used infected email attachments as an attack vector, and attempted to encrypt both the user’s files and the Master Boot Record. The adage “an ounce of prevention is worth a pound of cure” certainly holds true for enterprises—keeping systems patched and up-to-date is often a cost-effective and successful means of preventing the loss of data integrity. Unfortunately, even taking all possible preventative measures will not always stop the loss of data integrity, in which case the ability to quickly detect and respond to events is paramount.

The project described in this document could help organizations detect and respond to data integrity events. NCCoE projects include an architectural description and a reference design—an example solution—that addresses a technical challenge. Reference designs integrate commercial and open source products to demonstrate an implementation of standards and best practices. This project will result in a publicly available NIST Cybersecurity Practice Guide, a detailed implementation guide of the practical steps needed to implement a cybersecurity reference design that addresses this challenge.

Scope

This project will answer specific questions pertaining to detecting and responding to data integrity events:

- What is the baseline activity of systems and networks?
 - Identifying the baseline activity will prepare for detection of anomalous activity.
- When has a data integrity event occurred and what is the impact?
- How will a previously established response plan be executed?
- How will incidents be contained and mitigated?

This project will address:

1. A network baselining solution to establish normal parameters for activity.
2. An event detection solution with components that monitor:
 a. Systems for integrity events, including malicious code, unauthorized connections and devices, and similar events.
 b. Networks for unusual activity and potential cybersecurity events.
3. An event data aggregation and correlation solution to assist in the detection, containment, mitigation, and response to a data integrity event.
4. A vulnerability scanning solution to identify potential vectors for data integrity attacks.
5. A forensic solution to assist forensic investigators in responding to a data integrity event.

Assumptions/Challenges

Security Team
The size, budget, and expertise of members of a security team varies significantly among organizations. Both detection, and to a larger degree, response to a data integrity event depend on qualified security employees to analyze and act on the data presented by cybersecurity tools. This project will make assumptions about the core competencies of an organization’s security team.

Background
This project is a follow-on to the first Data Integrity project, “Data Integrity: Recovering from Ransomware and Other Destructive Events.” That project began by working with organizations across the set of critical infrastructure industries, including information sharing and analysis centers (ISACs). This collaboration identified the need for a data integrity solution.

The NCCoE held a workshop to identify key issues that affect consumer data protection, encapsulated in NISTIR 8050. NISTIR 8050 identified data integrity (among other items) as a key cybersecurity issue that needs to be addressed. The need arises from the recognition that malicious actors are devising methods of corrupting data within organizations. The data corruption includes data modification as well as data destruction. In addition, the NCCoE met with representatives the financial sector ISAC (FS-ISAC) for guidance, and worked with the FS-ISAC Destructive Malware Data Integrity Task Force.

As this first project matured, additional topics arose that stepped out of the recover phase of a data integrity attack, and aligned better with either identify, protect, detect, or respond functions of the Cybersecurity Framework (CSF). Thus, the evolution of the next two data integrity projects began. These projects have been broken into Identify and Protect and Detect and Respond. The grouping was created due to the life cycle of a data integrity attack. In the stages prior to the attack, organizations must be able to identify their infrastructure and develop a protection capability. During an attack, organizations must be able to detect the occurrence and respond in accordance with their response plan. After an attack, organizations must be able to recover. The data integrity projects have been developed in accordance to this methodology.

2 Scenario

The example scenarios below illustrate some of the challenges that this project will address. The relevant functions and categories from the NIST Framework for Improving Critical Infrastructure Cybersecurity (referred to as the Cybersecurity Framework or CSF) that can be employed to mitigate the events throughout the attack are listed below. The specific NIST CSF subcategories are listed in parentheses in each table.

Scenario 1: Ransomware
For financial gain, an organized crime group has set up a seemingly legitimate domain with destructive malware disguised as a legitimate virus-scanning program. Once installed, it encrypts
the organization’s file system and demands a ransom payment in order to decrypt the files. Left unmitigated, the malware on one system is designed to move laterally within the network to other client and server systems within an organization’s network, encrypting those systems and demanding ransom in exchange for their files.

The project addresses Detect and Respond CSF categories.

- User visits a phishing site.
 - Detect: Phishing site is identified as malicious (PR.DS-6, DE.AE-5, DE.CM-5, DE.DP-2, RS.CO-2).
 - Respond: Download is stopped (PR.DS-6, DE.AE-5, DE.CM-5, DE.DP-2, RS.CO-2).
 - Detect/Respond: Malware scans are performed to identify impact (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Respond: Phishing site is added to list of blocked sites (RS.RP-1, RS.MI-1, RS.MI-2).

- Ransomware is downloaded from the phishing site.
 - Detect: Ransomware executable is identified as malicious (DE.AE-5, DE.CM-4, DE.CM-7, DE.DP-2, RS.CO-2).
 - Detect/Respond: Ransomware executable is contained, sandboxed, and analyzed (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Respond: Ransomware executable is added to blacklist or blocked by whitelist, and security is notified of breach (RS.RP-1, RS.MI-1, RS.MI-2).

- Ransomware executes and attempts to move laterally and communicate with home server.
 - Detect: Ransomware communication is intercepted (DE.AE-1, DE.AE-5, DE.CM-1, DE.CM-7, DE.DP-2, RS.CO-2).
 - Detect: Attempts to gain remote access to a remote server through vulnerability exploitation are detected (DE.AE-1, DE.CM-1, DE.CM-7, DE.DP-2).
The project does not address these Identify, Protect, and Recover categories.

- Before ransomware is downloaded from a phishing site
 - Identify:
 - Inventory of systems (ID.AM-1, ID.AM-2)
 - Identification of vulnerabilities (ID.RA-1, ID.RA-2, ID.RA-5, DE.CM-8)
 - Protect:
 - Network vulnerabilities are mitigated (PR.IP-12, RS.MI-3).
 - Host vulnerabilities are mitigated (PR.IP-12, RS.MI-3).
 - Create backups (PR.IP-4, PR.DS-1).
 - Utilize secure storage (PR.DS-1).
 - File system integrity information is baselined (PR.DS-6).
 - Logs of normal activity are captured (PR.PT-1).
 - Maintenance infrastructure for vulnerability mitigation is operational (PR.MA-2).
- Ransomware executes and attempts to move laterally and communicate with home server.
 - Recover: Backups are used to remediate the damage (RC.RP-1).

Scenario 2: Data Destruction Malware

An adversary wishing to impact an organization’s operations leaves several infected Universal Serial Bus (USB) drives in the parking lot of the building. When an unsuspecting employee plugs in the drive, it immediately modifies text files and deletes media files on the user’s machine.

The project addresses Detect and Respond CSF categories.

- User inserts an infected USB drive.
 - Detect: USB is identified as malicious (DE.AE-5, DE.CM-4, DE.CM-7, DE.DP-2, RS.CO-2).
 - Respond: Autorun is halted (DE.AE-5, DE.CM-4, DE.CM-7, DE.DP-2, RS.CO-2).
- The USB drive attempts to execute the malware.
 - Detect/Respond: USB’s executable is contained, sandboxed, and analyzed (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Respond: USB’s executable is added to blacklist or blocked by whitelist, and security is notified of breach (RS.RP-1, RS.MI-1, RS.MI-2).
- Malware executes and attempts to modify the system’s files.
 - Respond: Malware origin is identified and USB is removed (RS.RP-1, RS.MI-1, RS.MI-2).
Scenario 3: Virtual Machine Data Loss

A privileged user running automatic maintenance on the organization’s virtual machines (VMs) accidentally deletes one of the VMs. The user does not immediately notice the accidental deletion.

The project does not address these Identify, Protect, and Recover categories.

- Before a USB containing destructive malware is inserted
 - Identify:
 - Inventory of systems (ID.AM-1, ID.AM-2)
 - Identification of vulnerabilities (ID.RA-1, ID.RA-2, ID.RA-5, DE.CM-8)
 - Protect:
 - Network vulnerabilities are mitigated (PR.IP-12, RS.MI-3).
 - Host vulnerabilities are mitigated (PR.IP-12, RS.MI-3).
 - Create backups (PR.IP-4, PR.DS-1).
 - Utilize secure storage (PR.DS-1).
 - File system integrity information is baselined (PR.DS-6).
 - Logs of normal activity are captured (PR.PT-1).
 - Maintenance infrastructure for vulnerability mitigation is operational (PR.MA-2).
- Malware executes and attempts to modify the system’s files.
 - Recover: Backups are used to remediate the damage (RC.RP-1).

The project addresses Detect and Respond CSF categories.

- Maintenance script deletes a VM.
 - Detect: VM deletion is identified as abnormal (DE.AE-5, DE.CM-3, DE.CM-7, DE.DP-2, RS.CO-2).
 - Detect/Respond: Impact of VM deletion is analyzed (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Respond: Security team is notified about VM deletion (RS.RP-1, RS.MI-1, RS.MI-2).
The project does not address these Identify, Protect and Recover categories.

- Before the accidental change happens
 - Identify:
 - Inventory of virtual machines (ID.AM-2)
 - Protect:
 - Create virtual machine backups (PR.IP-4, PR.DS-1).
 - Utilize secure storage (PR.DS-1).
 - Logs of normal virtual activity are captured (PR.PT-1).
- Maintenance script deletes a VM.
 - Recover: Virtual machine backups are used to remediate the damage (RC.RP-1).

Scenario 4: Server Permissions Change

An adversary wishing to gain access to an organization’s operations launches a spear-phishing campaign against privileged individuals in the target organization through the use of an infected email attachment. When one of the users opens the attachment, the malware immediately begins creating back doors for the adversary to use at a later point.
The project addresses Detect and Respond CSF categories.

- **User receives spear-phishing email.**
 - Detect: Email is identified as a phishing email (PR.DS-6, DE.AE-5, DE.CM-5, DE.DP-2, RS.CO-2).
 - Detect/Respond: Malware scans are performed to identify impact (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Respond: Security team is notified about phishing attempt and email is automatically moved to spam across the enterprise (RS.RP-1, RS.MI-1, RS.MI-2).

- **User downloads infected email attachment.**
 - Detect: Attachment is identified as infected (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Detect/Respond: Attachment executable is contained, sandboxed, and analyzed (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Respond: Attachment is added to blacklist or blocked by whitelist, and security is notified of potential breach (RS.RP-1, RS.MI-1, RS.MI-2).

- **User opens infected email attachment and malware executes.**
 - Detect: Back door creation is logged and flagged as suspicious (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Detect: Network activity related to these back doors is intercepted (RS.RP-1, RS.MI-1, RS.MI-2).
 - Respond: Security is notified of suspicious activity and back doors are disabled (RS.RP-1, RS.MI-1, RS.MI-2).
Scenario 5: Database Metadata Change

An insider seeking to disrupt an organization’s operations for financial gain in the stock market makes changes to the database structure. These changes leave the applications relying on the affected database tables unable to function properly.

The project addresses Detect and Respond CSF categories.

- Insider changes directory structure.
 - Detect/Respond: Structure changes to the database and the associated user are noticed and reported (DE.AE-5, DE.CM-3, DE.CM-7, DE.DP-2, RS.CO-2).
 - Detect/Respond: Errors in connecting to the database and other impacted systems are noticed and reported (DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4).
 - Respond: Security is notified of abnormal user activity (RS.RP-1, RS.MI-1, RS.MI-2).
The project does not address these Identify, Protect, and Recover categories.

- Before the insider makes changes to the database structure
 - Identify:
 - Inventory of database structure (ID.AM-2)
 - Inventory of systems relying on the database (ID.AM-1, ID.AM-2)
 - Identification of vulnerabilities (ID.RA-1, ID.RA-2, ID.RA-5, DE.CM-8)
 - Protect:
 - Network vulnerabilities are mitigated (PR.IP-12, RS.MI-3).
 - Host vulnerabilities are mitigated (PR.IP-12, RS.MI-3).
 - Create database backups (PR.IP-4, PR.DS-1).
 - Logs of queries are captured (PR.PT-1).
 - Database structure is baselined with integrity monitoring tool (PR.DS-6).
 - Insider changes directory structure.
 - Recover: Database backups are used to restore the database structure (RC.RP-1).
Component List

Data Integrity Solutions for this project include but are not limited to:

- integrity monitoring
- event detection
 - malicious software detection
 - unauthorized activity detection
 - anomalous activity detection
- logging and data correlation software
- reporting capability
- vulnerability management
- forensics/analytics tools
- mitigation and containment software

Desired Requirements

To address the scenarios in Section 2, this project will use a selection of commercially available technologies to demonstrate security and functional characteristics of a data integrity solution designed to satisfy the Detect and Respond functions of the CSF. The solution shall:

- detect unauthorized or malicious activity on the network
- detect unauthorized or malicious mobile code (such as web technologies like JavaScript, VBScript, and other code executed locally but loaded from an external site)
• detect unauthorized or malicious executables
• detect unauthorized or malicious behavior
• report unauthorized or malicious activity on the network
• report unauthorized or malicious mobile code events
• report unauthorized or malicious executables
• report unauthorized or malicious behavior
• analyze the impact of unauthorized or malicious activity on the network
• analyze the impact of unauthorized or malicious mobile code events
• analyze the impact of unauthorized or malicious executables
• analyze the impact of unauthorized or malicious behavior
• mitigate the impact of unauthorized or malicious activity on the network
• mitigate the impact of unauthorized or malicious mobile code events
• mitigate the impact of unauthorized or malicious executables
• mitigate the impact of unauthorized or malicious behavior
• contain unauthorized or malicious activity on the network
• contain unauthorized or malicious mobile code events
• contain unauthorized or malicious executables
• contain unauthorized or malicious behavior

4 RELEVANT STANDARDS AND GUIDANCE

• Office of Management and Budget Circular Number A-130 – Managing Information as a Strategic Resource
 https://www.whitehouse.gov/sites/default/files/omb/assets/OMB/circulars/a130/a130 revised.pdf
• NIST FIPS 140-2 – Security Requirements for Cryptographic Modules
• NIST SP 800-53 Rev. 4 – Security and Privacy Controls for Federal Information Systems and Organizations
• NIST SP 800-57 Part 1 Revision 4 – Recommendation for Key Management: Part 1 – General
• NIST SP 800-61 Rev. 2 – Computer Security Incident Handling Guide
 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
• NIST SP 800-83 Rev. 1 – Guide to Malware Incident Prevention and Handling
5 Security Control Map

This table maps the characteristics of the commercial products that the NCCoE will apply to this cybersecurity challenge to the applicable standards and best practices described in the Framework for Improving Critical Infrastructure Cybersecurity (CSF), and other NIST activities. This exercise is meant to demonstrate the real-world applicability of standards and best practices, but does not imply that products with these characteristics will meet your industry’s requirements for regulatory approval or accreditation.

Table 1: Security Control Map

<table>
<thead>
<tr>
<th>Capability Requirement</th>
<th>NIST CSF Category</th>
<th>Informative References</th>
<th>Relevant Industry Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>The solution will have the capability to detect unauthorized or malicious activity on its network</td>
<td>DE.AE-1, DE.CM-1, DE.CM-7, DE.DP-2</td>
<td>NIST 800-53 Rev. 4 AC-2, AC-4, AU-12, CA-2, CA-3, CA-7, CM-2, CM-3, CM-8, PE-3, PE-6, PE-20, PM-24, SC-5, SC-7, SI-4 ISO/IEC 27001:2013 A.18.1.4</td>
<td>HIPAA 164.308.a.6.ii</td>
</tr>
<tr>
<td>The solution will have the capability to report unauthorized or malicious activity on its network</td>
<td>DE.AE-5, RS.CO-2, RS.RP-1</td>
<td>NIST 800-53 Rev. 4 AU-6, CP-2, CP-10, IR-4, IR-5, IR-8 ISO/IEC 27001:2013 A.6.1.3, A.16.1.2, A.16.1.5</td>
<td></td>
</tr>
</tbody>
</table>
The solution will mitigate the impact of unauthorized or malicious activity on its network

<table>
<thead>
<tr>
<th>The solution will have the capability to detect unauthorized or malicious mobile code on its hosts</th>
<th>The solution will have the capability to report unauthorized or malicious mobile code on its hosts</th>
<th>The solution will analyze the impact of unauthorized or malicious mobile code on its hosts</th>
<th>The solution will contain unauthorized or malicious mobile code on its hosts</th>
<th>The solution will mitigate the impact of unauthorized or malicious mobile code on its hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS.MI-2, RS.RP-1</td>
<td>PR.DS-6, DE.CM-5, DE.DP-2</td>
<td>DE.AE-2, DE.AE-3, DE.AE-4, RS.AN-1, RS.AN-2, RS.AN-3, RS.AN-4, RS.RP-1</td>
<td>RS.MI-1, RS.RP-1</td>
<td>RS.MI-2, RS.RP-1</td>
</tr>
<tr>
<td>NIST 800-53 Rev. 4 C-2, CP-10, IR-4, IR-8</td>
<td>NIST 800-53 Rev. 4 CA-7, PM-24, SI-4, SI-7</td>
<td>NIST 800-53 Rev. 4 AU-6, AU-7, CA-7, CP-2, CP-10, IR-4, IR-5, IR-8, PE-6, RA-3, SI-4</td>
<td>NIST 800-53 Rev. 4 CP-2, CP-10, IR-4, IR-8</td>
<td>NIST 800-53 Rev. 4 CP-2, CP-10, IR-4, IR-8</td>
</tr>
</tbody>
</table>

Project Description: Data Integrity: Detecting and Responding to Ransomware and Other Destructive Events
Project Description: Data Integrity: Detecting and Responding to Ransomware and Other Destructive Events

Project Description:

Data Integrity: Detecting and Responding to Ransomware and Other Destructive Events

RS.AN-3, RS.AN-4, RS.RP-1

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Standard</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>The solution will mitigate the impact of unauthorized or malicious code execution</td>
<td>NIST 800-53 Rev. 4</td>
<td>CP-2, CP-10, IR-4, IR-8</td>
</tr>
<tr>
<td>The solution will have the capability to detect unauthorized or malicious user behavior</td>
<td>NIST 800-53 Rev. 4</td>
<td>AC-2, AU-12, AU-13, CA-2, CA-7, CM-3, CM-8, CM-10, CM-11, PE-3, PE-6, PE-20, PM-24, SI-4</td>
</tr>
<tr>
<td></td>
<td>ISO/IEC 27001:2013</td>
<td>A.12.4.1, A.18.1.4</td>
</tr>
<tr>
<td>The solution will have the capability to report unauthorized or malicious user behavior</td>
<td>NIST 800-53 Rev. 4</td>
<td>AC-2, AU-12, AU-13, CA-2, CA-7, CM-3, CM-8, CM-10, CM-11, PE-3, PE-6, PE-20, PM-24, SI-4</td>
</tr>
<tr>
<td>The solution will analyze the impact of unauthorized or malicious user behavior</td>
<td>NIST 800-53 Rev. 4</td>
<td>AC-2, AU-12, AU-13, CA-2, CA-7, CP-2, CP-10, IR-4, IR-5, IR-8, PE-6, RA-3, SI-4</td>
</tr>
<tr>
<td>The solution will contain unauthorized or malicious user behavior</td>
<td>NIST 800-53 Rev. 4</td>
<td>CP-2, CP-10, IR-4, IR-8</td>
</tr>
<tr>
<td>The solution will mitigate the impact of unauthorized or malicious user behavior</td>
<td>NIST 800-53 Rev. 4</td>
<td>CP-2, CP-10, IR-4, IR-8</td>
</tr>
</tbody>
</table>

HIPAA:

- 164.308.a.6.ii
- 164.312.b
APPENDIX A REFERENCES

[12] E. Barker, Recommendation for Key Management, NIST Special Publication (SP) 800-57 Part 1 Revision 4, National Institute of Standards and Technology, Gaithersburg, Maryland, January 2016, 159pp. https://doi.org/10.6028/NIST.SP.800-57pt1r4

APPENDIX B ACRONYMS AND ABBREVIATIONS

Provide a list of alphabetized acronyms and abbreviations spelled out here, using a borderless table.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF</td>
<td>Cybersecurity Framework</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>FS-ISAC</td>
<td>Financial Sector Information Sharing and Analysis Center</td>
</tr>
<tr>
<td>ISAC</td>
<td>Information Sharing and Analysis Center</td>
</tr>
<tr>
<td>NCCoE</td>
<td>National Cybersecurity Center of Excellence</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>SP</td>
<td>Special Publication</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual Machine</td>
</tr>
</tbody>
</table>
APPENDIX C

GLOSSARY

Provide a list of alphabetized words and terms defined here, using a borderless table.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adversary</td>
<td>Individual, group, organization, or government that conducts or has the intent to conduct detrimental activities.</td>
<td>SP 800-30</td>
</tr>
<tr>
<td>Analysis</td>
<td>The examination of acquired data for its significance and probative value to the case.</td>
<td>SP 800-72</td>
</tr>
<tr>
<td>Attack</td>
<td>Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy information system resources or the information itself.</td>
<td>CNSSI-4009</td>
</tr>
<tr>
<td>Back Door</td>
<td>Typically unauthorized hidden software or hardware mechanism used to circumvent security controls.</td>
<td>CNSSI-4009</td>
</tr>
<tr>
<td>Backup</td>
<td>A copy of files and programs made to facilitate recovery.</td>
<td>SP 800-34; CNSSI-4009</td>
</tr>
<tr>
<td>Baselining</td>
<td>Monitoring resources to determine typical utilization patterns so that significant deviations can be detected.</td>
<td>SP 800-61</td>
</tr>
<tr>
<td>Blacklist</td>
<td>A list of discrete entities, such as hosts or applications, that have been previously determined to be associated with malicious activity.</td>
<td>SP 800-94</td>
</tr>
<tr>
<td>Cybersecurity</td>
<td>The ability to protect or defend the use of cyberspace from cyber attacks.</td>
<td>CNSSI-4009</td>
</tr>
<tr>
<td>Data</td>
<td>A subset of information in an electronic format that allows it to be retrieved or transmitted.</td>
<td>CNSSI-4009</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>The property that data has not been changed, destroyed, or lost in an unauthorized or accidental manner.</td>
<td>CNSSI-4009</td>
</tr>
<tr>
<td>Data Loss</td>
<td>The alteration or deletion of proprietary, sensitive, personal, or otherwise critical data.</td>
<td>CNSSI-4009</td>
</tr>
</tbody>
</table>
Data Integrity: Detecting and Responding to Ransomware and Other Destructive Events

Note: The definition in NIST IR 7298 describes data loss as a loss of confidentiality, for example, where data is stolen and leaked. Here, we refer to data loss as data being destroyed in some way.

Decryption
Conversion of ciphertext to plaintext through the use of a cryptographic algorithm.

SOURCE: FIPS 185

Encryption
Conversion of plaintext to ciphertext through the use of a cryptographic algorithm.

SOURCE: FIPS 185

Enterprise
An organization with a defined mission/goal and a defined boundary, using information systems to execute that mission, and with responsibility for managing its own risks and performance. An enterprise may consist of all or some of the following business aspects: acquisition, program management, financial management (e.g., budgets), human resources, security, and information systems, information and mission management.

SOURCE: CNSSI-4009

Incident
A violation or imminent threat of violation of computer security policies, acceptable use policies, or standard security practices.

SOURCE: SP 800-61

Impact
The magnitude of harm that can be expected to result from the consequences of unauthorized disclosure of information, unauthorized modification of information, unauthorized destruction of information, or loss of information or information system availability.

SOURCE: SP 800-60

Malware
A program that is inserted into a system, usually covertly, with the intent of compromising the confidentiality, integrity, or availability of the victim’s data, applications, or operating system or of otherwise annoying or disrupting the victim.

SOURCE: SP 800-83

Master Boot Record
A section of partitioned drives that describes how information is stored on the drive. It also usually loads the installed operating system.

Mobile Code
Software programs or parts of programs obtained from remote information systems, transmitted across a network, and executed on a local information system without explicit installation or execution by the recipient.

Note: Some examples of software technologies that provide the mechanisms for the production and use of mobile code include Java, JavaScript, ActiveX, VBScript, etc.

SOURCE: CNSSI-4009
Phishing Tricking individuals into disclosing sensitive personal information through deceptive computer-based means.
SOURCE: SP 800-83

Ransomware A type of malware that encrypts data on a system, usually with the goal of selling the data back to the owner for money.

Security A condition that results from the establishment and maintenance of protective measures that enable an enterprise to perform its mission or critical functions despite risks posed by threats to its use of information systems. Protective measures may involve a combination of deterrence, avoidance, prevention, detection, recovery, and correction that should form part of the enterprise’s risk management approach.
SOURCE: CNSSI-4009

Threat Any circumstance or event with the potential to adversely impact organizational operations (including mission, functions, image, or reputation), organizational assets, individuals, other organizations, or the nation through an information system via unauthorized access, destruction, disclosure, modification of information, and/or denial of service.
SOURCE: SP 800-53; SP 800-53A; SP 800-27; SP 800-60; SP 800-37; CNSSI-4009

Virus A computer program that can copy itself and infect a computer without permission or knowledge of the user. A virus might corrupt or delete data on a computer, use email programs to spread itself to other computers, or even erase everything on a hard disk.
SOURCE: CNSSI-4009

Vulnerability Weakness in an information system, system security procedures, internal controls, or implementation that could be exploited or triggered by a threat source.
SOURCE: SP 800-53; SP 800-53A; SP 800-37; SP 800-60; SP 800-115; FIPS 200

Zero-day Exploit An attack on an information system that makes use of a zero-day vulnerability.

Zero-day Vulnerability A vulnerability in an existing system or application that is unknown to the vendor.